An overview of methods to handle missing

 valuesJulie Josse
INRIA - Ecole Polytechnique
5 November 2020

Séminaire Science des Données Nantes

Introduction

Traumabase project: decision support for trauma patients.

- 20000 trauma patients
- 250 continuous and categorical variables: heterogeneous
- 11 hospitals: multilevel data
- 4000 new patients/ year

Center	Accident	Age	Sex	Lactactes	BP	Shock	Platelet	\ldots
Beaujon	fall	54	m	NM	180	yes	292000	
Pitie	gun	26	m	NA	131	no	323000	
Beaujon	moto	63	m	3.9	NR	yes	318000	
Pitie	moto	30	w	Imp	107	no	211000	
HEGP	knife	16	m	2.5	118	no	184000	
\vdots								\ddots

[^0]
Traumabase project: decision support for trauma patients.

- 20000 trauma patients
- 250 continuous and categorical variables: heterogeneous
- 11 hospitals: multilevel data
- 4000 new patients/ year

Center	Accident	Age	Sex	Lactactes	BP	Shock	Platelet	\ldots
Beaujon	fall	54	m	NM	180	yes	292000	
Pitie	gun	26	m	NA	131	no	323000	
Beaujon	moto	63	m	3.9	NR	yes	318000	
Pitie	moto	30	w	Imp	107	no	211000	
HEGP	knife	16	m	2.5	118	no	184000	
\vdots								\ddots

\Rightarrow Estimate causal effect: Administration of the treatment
"tranexamic acid" on the outcome mortality for trauma brain patients.
Causal Inference (IPW) with covariates with missing values ${ }^{1}$

[^1]
Traumabase project: decision support for trauma patients.

- 20000 trauma patients
- 250 continuous and categorical variables: heterogeneous
- 11 hospitals: multilevel data
- 4000 new patients/ year

Center	Accident	Age	Sex	Lactactes	BP	Shock	Platelet	\ldots
Beaujon	fall	54	m	NM	180	yes	292000	
Pitie	gun	26	m	NA	131	no	323000	
Beaujon	moto	63	m	3.9	NR	yes	318000	
Pitie	moto	30	w	Imp	107	no	211000	
HEGP	knife	16	m	2.5	118	no	184000	
\vdots								\ddots

\Rightarrow Explain and Predict platelet levels, hemorrhagic shock given
pre-hospital features
Ex linear, logistic regression/ random forests with covariates with missing values

Missing values

Percentage of missing values

Different pattern: sporadic \& systematic (missing variable in one hospital) Different types: MCAR, MAR, MNAR

Complete-case analysis

?lm, ?glm, na.action = na.omit
"One of the ironies of Big Data is that missing data play an ever more significant role" (R. Sameworth, 2019)

An $n \times p$ matrix, each entry is missing with probability 0.01
$p=5 \quad \Longrightarrow \approx 95 \%$ of rows kept
$p=300 \Longrightarrow \approx 5 \%$ of rows kept

Visualization

The first thing to do with missing values (as for any analysis) is descriptive statistics: Visualization of patterns to get hints on how and why they occur VIM (M. Templ), naniar (N. Tierney), FactoMineR (Husson et al.)

Right: PAS_m close to PAD_m: Often missing on both PAS \& PAD IOT: nested questions. Q1: yes/no, if yes Q2 - Q4, if no Q2 - Q4 "missing"

Note: Crucial before starting any treatment of missing values and after

Missing values mechanism

Rubin's taxonomy Rubin, 1976

MCAR - MAR - MNAR
Orange: missing values for Systolic Blood Pressure - Gravity index (GCS) is always observed

MCAR (completely at random): Proba to be missing does not depend on SBP neither on gravity MAR: Proba depends on gravity (we do not measure for too severe patients) MNAR (not at random): Proba depends on SBP (low SBP not measured)

Overview

1. Introduction
2. Inference with missing values/ Imputation
3. Supervised learning with missing values Random Forests with missing values

Inference with missing values/
 Imputation

Collaborators on inference/imputation with missing values

- W. Jiang, A. Sportisse, PhD student at Polytechnique
- F. Husson, Professor Agronomy University. (package missMDA, FactoMineR)
- G. Bogdan, Professor Wroclaw. C. Boyer, Associate Professor Sorbonne
- Traumabase project: J.P. Nadal, T. Gauss, S. Hamada

Logistic Regression with Missing Covariates - Parameter Estimation, Model Selection and Prediction within a Joint-Modeling Framework. (2019). CSDA Adaptive Bayesian SLOPE - High dimensional Model Selection with Missing Values. (2020) In revision in JCGS.

Estimation and imputation in Probabilistic Principal Component Analysis with Missing Not At Random data. Neurips2020.

Missing Data Imputation using Optimal Transport. ICML2020.
Debiasing Stochastic Gradient Descent to handle missing values. Neurips2020.

Solutions to handle missing values (M(C)AR)

Books: Schafer (2002), Little \& Rubin (2019); Kim \& Shao (2013); Carpenter \& Kenward (2013); van Buuren (2018), etc.

Modify the estimation process to deal with missing values

Maximum likelihood: EM algorithm to obtain point estimates + Supplemented EM (Meng \& Rubin, 1991) / Louis formulae for their variability Ex logistic regression: EM to get $\hat{\beta}+$ Louis to get $\hat{V}(\hat{\beta})$

Aim: Estimate parameters \& their variance from an incomplete data
\Rightarrow Inferential framework

Solutions to handle missing values (M(C)AR)

Books: Schafer (2002), Little \& Rubin (2019); Kim \& Shao (2013); Carpenter \& Kenward (2013); van Buuren (2018), etc.

Modify the estimation process to deal with missing values

Maximum likelihood: EM algorithm to obtain point estimates + Supplemented EM (Meng \& Rubin, 1991) / Louis formulae for their variability Ex logistic regression: EM to get $\hat{\beta}+$ Louis to get $\hat{V}(\hat{\beta})$

Cons: Difficult to establish - not many softwares even for simple models One specific algorithm for each statistical method...

Aim: Estimate parameters \& their variance from an incomplete data
\Rightarrow Inferential framework

Solutions to handle missing values (M(C)AR)

Books: Schafer (2002), Little \& Rubin (2019); Kim \& Shao (2013); Carpenter \& Kenward (2013); van Buuren (2018), etc.

Modify the estimation process to deal with missing values

Maximum likelihood: EM algorithm to obtain point estimates +
Supplemented EM (Meng \& Rubin, 1991) / Louis formulae for their variability
Ex logistic regression: EM to get $\hat{\beta}+$ Louis to get $\hat{V}(\hat{\beta})$
Cons: Difficult to establish - not many softwares even for simple models One specific algorithm for each statistical method...

Imputation (multiple) to get a complete data set

Any analysis can be performed
Ex logistic regression: Impute and apply logistic model to get $\hat{\beta}, \hat{V}(\hat{\beta})$

Aim: Estimate parameters \& their variance from an incomplete data \Rightarrow Inferential framework

Mean imputation

- $\left(x_{i}, y_{i}\right) \underset{\text { i.i.d. }}{\sim} \mathcal{N}_{2}\left(\left(\mu_{x}, \mu_{y}\right), \Sigma_{x y}\right)$

$$
\begin{array}{c|c|}
\mu_{y}=0 & \hat{\mu}_{y}=-0.01 \\
\cline { 2 - 3 } \sigma_{y}=1 & \hat{\sigma}_{y}=1.01 \\
\cline { 2 - 3 }=0.6 & \hat{\rho}=0.66 \\
\hline
\end{array}
$$

Mean imputation

- $\left(x_{i}, y_{i}\right) \underset{\text { i.i.d. }}{\sim} \mathcal{N}_{2}\left(\left(\mu_{x}, \mu_{y}\right), \Sigma_{x y}\right)$
- 70 \% of missing entries completely at random on Y

Mean imputation

- $\left(x_{i}, y_{i}\right)_{\text {i.i.d. }}^{\sim} \mathcal{N}_{2}\left(\left(\mu_{x}, \mu_{y}\right), \Sigma_{x y}\right)$
- 70% of missing entries completely at random on Y
- Estimate parameters on the mean imputed data

Mean imputation deforms joint and marginal distributions

Mean imputation is bad for estimation

Individuals factor map (PCA)

Variables factor map (PCA)

PCA with mean imputation
library (FactoMineR) PCA (ecolo)
Warning message: Missing are imputed by the mean of the variable:
You should use imputePCA from missMDA

EM-PCA

library (missMDA)
imp <- imputePCA (ecolo) PCA (imp\$comp)
J. (2016). missMDA: Handling Missing Values in Multivariate Data Analysis, JSS.

Ecological data: ${ }^{2} n=69000$ species -6 traits. Estimated correlation between
Pmass \& Rmass ≈ 0 (mean imputation) or ≈ 1 (EM PCA)
${ }^{2}$ Wright, I. et al. (2004). The worldwide leaf economics spectrum. Nature.

Imputation methods

- by regression takes into account the relationship: Estimate β-impute $\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i} \Rightarrow$ variance underestimated and correlation overestimated
- by stochastic reg: Estimate β and σ - impute from the predictive $y_{i} \sim \mathcal{N}\left(x_{i} \hat{\beta}, \hat{\sigma}^{2}\right) \Rightarrow$ preserve distributions

Here $\hat{\beta}, \hat{\sigma}^{2}$ estimated with complete data, but MLE can be obtained with EM

Stochastic regression imputation

0.01
0.99
0.59

Imputation methods for multivariate data

Assuming a joint model

- Gaussian distribution: $x_{i} \sim \mathcal{N}(\mu, \Sigma)$ (Amelia Honaker, King, Blackwell)
- low rank: $X_{n \times d}=\mu_{n \times d}+\varepsilon \varepsilon_{i j} \stackrel{\text { iid }}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$ with μ of low rank k (softimpute Hastie \& Mazuder; missMDA J. \& Husson, mimi ${ }^{3}$)
- latent class - nonparametric Bayesian (dpmpm Reiter)
- deep learning using variational autoencoders (MIWAE, Mattei, 2018, VAEAC Ivanov et al., 2019), using GAN (GAIN, Yoon et al. 2018)

Using conditional models (joint implicitly defined)

- with logistic, multinomial, poisson regressions (mice van Buuren)
- iterative impute each variable by random forests (missForest Stekhoven)

Imputation for categorical, mixed, blocks/multilevel data ${ }^{4}$, etc.
\Rightarrow Rmistatic platform, more than 150 packages 5
${ }^{3}$ J. et al. Main effects and interactions in mixed and incomplete data frames. (2018) JASA.
${ }^{4} \mathrm{~J}$. et al. Imputation of mixed data with multilevel SVD. (2018). JCGS
5., et al. https://rmisstastic.netlify.com/

Random forests versus PCA

	Feat1	Feat2	Feat3	Feat4	Feat5 \ldots
C1	1	1	1	1	1
C2	1	1	1	1	1
C3	2	2	2	2	2
C4	2	2	2	2	2
C5	3	3	3	3	3
C6	3	3	3	3	3
C7	4	4	4	4	4
C8	4	4	4	4	4
C9	5	5	5	5	5
C10	5	5	5	5	5
C11	6	6	6	6	6
C12	6	6	6	6	6
C13	7	7	7	7	7
C14	7	7	7	7	7
Igor	8	NA	NA	8	8
Frank	8	NA	NA	8	8
Bertrand	9	NA	NA	9	9
Alex	9	NA	NA	9	9
Yohann	10	NA	NA	10	10
Jean	10	NA	NA	10	10

Missing

Feat	1 Fe	at2 Feat3	Feat4	Feat5	Feat1	Feat2	Feat3	Feat4	Feat5
1	1.0	1.00	1	1	1	1	1	1	1
1	1.0	1.00	1	1	1	1	1	1	1
2	2.0	2.00	2	2	2	2	2	2	2
2	2.0	2.00	2	2	2	2	2	2	2
3	3.0	3.00	3	3	3	3	3	3	3
3	3.0	3.00	3	3	3	3	3	3	3
4	4.0	4.00	4	4	4	4	4	4	4
4	4.0	4.00	4	4	4	4	4	4	4
5	5.0	5.00	5	5	5	5	5	5	5
5	5.0	5.00	5	5	5	5	5	5	5
6	6.0	6.00	6	6	6	6	6	6	6
6	6.0	6.00	6	6	6	6	6	6	6
7	7.0	7.00	7	7	7	7	7	7	7
7	7.0	7.00	7	7	7	7	7	7	7
8	6.87	6.87	8	8	8	8	8	8	8
8	6.87	6.87	8	8	8	8	8	8	8
9	6.87	6.87	9	9	9	9	9	9	9
9	6.87	6.87	9	9	9	9	9	9	9
10	6.87	6.87	10	10	10	10	10	10	10
10	6.87	6.87	10	10	10	10	10	10	10

missForest
imputePCA
\Rightarrow Imputation inherits from the method: RF (computationaly costly) good for non linear relationships / PCA good for linear relationships

Single imputation: Underestimation of the variability

\Rightarrow Incomplete Traumabase

X_{1}	X_{2}	X_{3}	\cdots	Y
NA	20	10	\cdots	shock
-6	45	NA	\cdots	shock
0	NA	30	\cdots	no shock
NA	32	35	\cdots	shock
-2	NA	12	\cdots	no shock
1	63	40	\cdots	shock

Single imputation: Underestimation of the variability

\Rightarrow Incomplete Traumabase

X_{1}	X_{2}	X_{3}	\cdots	Y
NA	20	10	\cdots	shock
-6	45	NA	\cdots	shock
0	NA	30	\cdots	no shock
NA	32	35	\cdots	shock
-2	NA	12	\cdots	no shock
1	63	40	\cdots	shock

\Rightarrow Completed Traumabase

X_{1}	X_{2}	X_{3}	\ldots	Y
3	20	10	\ldots	shock
-6	45	6	\ldots	shock
0	4	30	\ldots	no shock
-4	32	35	\ldots	shock
-2	75	12	\ldots	no shock
1	63	40	\ldots	shock

Single imputation: Underestimation of the variability

\Rightarrow Incomplete Traumabase

X_{1}	X_{2}	X_{3}	\cdots	Y
NA	20	10	\cdots	shock
-6	45	NA	\cdots	shock
0	NA	30	\cdots	no shock
NA	32	35	\cdots	shock
-2	NA	12	\cdots	no shock
1	63	40	\cdots	shock

\Rightarrow Completed Traumabase

X_{1}	X_{2}	X_{3}	\ldots	Y
3	20	10	\ldots	shock
-6	45	6	\ldots	shock
0	4	30	\ldots	no shock
-4	32	35	\ldots	shock
-2	75	12	\ldots	no shock
1	63	40	\ldots	shock

A single value can't reflect the uncertainty of prediction
Multiple impute 1) Generate M plausible values for each missing value

X_{1}	X_{2}	X_{3}	Y
3	20	10	s
-6	45	6	s
0	4	30	no s
-4	32	35	s
-2	75	12	no s
1	63	40	s

X_{1}	X_{2}	X_{3}	Y
-7	20	10	s
-6	45	9	s
0	12	30	no s
13	32	35	s
-2	10	12	no s
1	63	40	s

X_{1}	X_{2}	X_{3}	Y
7	20	10	s
-6	45	12	s
0	-5	30	no s
2	32	35	s
-2	20	12	no s
1	63	40	s

library (mice); mice(traumadata)
library (missMDA); MIPCA(traumadata)

Visualization of the imputed values

X_{1}	X_{2}	X_{3}	Y
3	20	10	s
-6	45	6	s
0	4	30	no s
-4	32	35	s
-2	15	12	no s
1	63	40	s

X_{1}	X_{2}	X_{3}	Y
-7	20	10	s
-6	45	9	s
0	12	30	no s
13	32	35	s
-2	10	12	no s
1	63	40	s

X_{1}	X_{2}	X_{3}	Y
7	20	10	s
-6	45	12	s
0	-5	30	no s
2	32	35	s
-2	20	12	no s
1	63	40	s

Multiple imputation

1) Generate M plausible values for each missing value

X_{1}	X_{2}	X_{3}	Y
3	20	10	s
-6	45	6	s
0	4	30	no s
-4	32	35	s
1	63	40	s
-2	15	12	no s

X_{1}	X_{2}	X_{3}	Y
-7	20	10	s
-6	45	9	s
0	12	30	no s
13	32	35	s
1	63	40	s
-2	10	12	no s

X_{1}	X_{2}	X_{3}	Y
7	20	10	s
-6	45	12	s
0	-5	30	no s
2	32	35	s
1	63	40	s
-2	20	12	no s

2) Perform the analysis on each imputed data set: $\hat{\beta}_{m}, \widehat{\operatorname{Var}}\left(\widehat{\beta}_{m}\right)$
3) Combine the results (Rubin's rules):

$$
\begin{aligned}
& \hat{\beta}=\frac{1}{M} \sum_{m=1}^{M} \hat{\beta}_{m} \\
& T=\frac{1}{M} \sum_{m=1}^{M} \widehat{\operatorname{Var}}\left(\hat{\beta}_{m}\right)+\left(1+\frac{1}{M}\right) \frac{1}{M-1} \sum_{m=1}^{M}\left(\hat{\beta}_{m}-\hat{\beta}\right)^{2}
\end{aligned}
$$

imp.mice <- mice(traumadata)
lm.mice.out <- with(imp.mice, glm(Y ~ ., family = "binomial"))
\Rightarrow Variability of missing values taken into account

Logistic regression with missing covariates: Parameter estima-

 tion, model selection and prediction (Jiang, J., Lavielle, Gauss, Hamada, 2018)$x=\left(x_{i j}\right)$ a $n \times d$ matrix of quantitative covariates
$y=\left(y_{i}\right)$ an n-vector of binary responses $\{0,1\}$
Logistic regression model: $\mathbb{P}\left(y_{i}=1 \mid x_{i} ; \beta\right)=\frac{\exp \left(\beta_{0}+\sum_{j=1}^{d} \beta_{j} x_{i j}\right)}{1+\exp \left(\beta_{0}+\sum_{j=1}^{d} \beta_{j} x_{i j}\right)}$
Covariables: $x_{i} \underset{\text { i.i.d. }}{\sim} \mathcal{N} \mathcal{N}(\mu, \Sigma)$
Log-likelihood with $\theta=(\mu, \Sigma, \beta)$:
$\mathcal{L L}(\theta ; x, y)=\sum_{i=1}^{n}\left(\log \left(\mathrm{p}\left(y_{i} \mid x_{i} ; \beta\right)\right)+\log \left(\mathrm{p}\left(x_{i} ; \mu, \Sigma\right)\right)\right)$.

Logistic regression with missing covariates: Parameter estima-

 tion, model selection and prediction (Jiang, J., Lavielle, Gauss, Hamada, 2018)$x=\left(x_{i j}\right)$ a $n \times d$ matrix of quantitative covariates
$y=\left(y_{i}\right)$ an n-vector of binary responses $\{0,1\}$
Logistic regression model: $\mathbb{P}\left(y_{i}=1 \mid x_{i} ; \beta\right)=\frac{\exp \left(\beta_{0}+\sum_{j=1}^{d} \beta_{j} x_{i j}\right)}{1+\exp \left(\beta_{0}+\sum_{j=1}^{d} \beta_{j} x_{i j}\right)}$
Covariables: $\quad x_{i} \underset{\text { i.i.d. }}{\sim} \mathcal{N}(\mu, \Sigma)$
Log-likelihood with $\theta=(\mu, \Sigma, \beta)$:
$\mathcal{L L}(\theta ; x, y)=\sum_{i=1}^{n}\left(\log \left(\mathrm{p}\left(y_{i} \mid x_{i} ; \beta\right)\right)+\log \left(\mathrm{p}\left(x_{i} ; \mu, \Sigma\right)\right)\right)$.

X_{1}	X_{2}	X_{3}	\ldots	Y
NA	20	10	\ldots	shock
-6	45	NA	\ldots	shock
0	NA	30	\ldots	no shock
NA	32	35	\ldots	shock
1	63	40	\ldots	shock
-2	NA	12	\ldots	no shock

Likelihood inference with Missing At Random values

$\mathcal{L L}(\theta ; x, y)=\sum_{i=1}^{n}\left(\log \left(\mathrm{p}\left(y_{i} \mid x_{i} ; \beta\right)\right)+\log \left(\mathrm{p}\left(x_{i} ; \mu, \Sigma\right)\right)\right)$

X_{1}	X_{2}	X_{3}	\ldots	M_{1}	M_{2}	M_{3}	\ldots	Y
NA	20	10	\ldots	1	0	0	\ldots	shock
-6	45	NA	\ldots	0	0	1	\ldots	shock
0	NA	30	\ldots	0	1	0	\ldots	no shock
NA	32	35	\ldots	1	0	0	\ldots	shock

$m=\left(m_{i j}\right)$ a $n \times d$ matrix $m_{i j}=0$ if $x_{i j}$ is observed and 1 otherwise
$\left(y_{i}, x_{i}, m_{i}\right) \underset{\text { i.i.d. }}{\sim}\left\{p_{\theta}(x, y) q_{\phi}(m \mid x, y)\right\}$ data \& missing values mechanism

Likelihood inference with Missing At Random values

$$
\mathcal{L L}(\theta ; x, y)=\sum_{i=1}^{n}\left(\log \left(\mathrm{p}\left(y_{i} \mid x_{i} ; \beta\right)\right)+\log \left(\mathrm{p}\left(x_{i} ; \mu, \Sigma\right)\right)\right)
$$

X_{1}	X_{2}	X_{3}	\ldots	M_{1}	M_{2}	M_{3}	\ldots	Y
NA	20	10	\ldots	1	0	0	\ldots	shock
-6	45	NA	\ldots	0	0	1	\ldots	shock
0	NA	30	\ldots	0	1	0	\ldots	no shock
NA	32	35	\ldots	1	0	0	\ldots	shock

$m=\left(m_{i j}\right)$ a $n \times d$ matrix $m_{i j}=0$ if $x_{i j}$ is observed and 1 otherwise
$\left(y_{i}, x_{i}, m_{i}\right)_{\text {i.i.d. }}^{\sim}\left\{p_{\theta}(x, y) q_{\phi}(m \mid x, y)\right\}$ data \& missing values mechanism
Note $x_{i}=\left(x_{i, \text { obs }}, x_{i, \text { mis }}\right) \mathcal{L}(\theta, \phi) \triangleq \prod_{i=1}^{n} \int q_{\phi}\left(m_{i} \mid x_{i}, y_{i}\right) p_{\theta}\left(x_{i}, y_{i}\right) d x_{i, \text { mis }}$
MAR: $\quad \forall \phi, \forall x_{i, \text { mis }}^{\prime}$ such that $x_{i}^{\prime}=\left(x_{i, \text { obs }}, x_{i, m i s}^{\prime}\right), q_{\phi}\left(m_{i} \mid x_{i}^{\prime}\right)=q_{\phi}\left(m_{i} \mid x_{i}\right)$
Ignorable mechanism $\mathcal{L}(\theta, \phi) \triangleq \prod_{i=1}^{n} q_{\phi}\left(m_{i} \mid x_{i, \text { obs }}, y_{i}\right) \int p_{\theta}\left(x_{i}, y_{i}\right) d x_{i, \text { mis }}$

$$
\mathcal{L}_{\text {obs }}(\theta) \triangleq \prod_{i=1}^{n} \int p_{\theta}\left(x_{i}, y_{i}\right) d x_{i, m i s}
$$

Stochastic Approximation EM - package misaem

$\arg \max \mathcal{L} \mathcal{L}\left(\theta ; x_{\text {obs }}, y\right)=\int \mathcal{L} \mathcal{L}(\theta ; x, y) d x_{\text {mis }}$

- E-step: Evaluate the quantity

$$
\begin{aligned}
Q_{k}(\theta) & =\mathbb{E}\left[\mathcal{L} \mathcal{L}(\theta ; x, y) \mid x_{\mathrm{obs}}, y ; \theta_{k-1}\right] \\
& =\int \mathcal{L} \mathcal{L}(\theta ; x, y) \mathrm{p}\left(x_{\mathrm{mis}} \mid x_{\mathrm{obs}}, y ; \theta_{k-1}\right) d x_{\mathrm{mis}}
\end{aligned}
$$

- M-step: $\theta_{k}=\arg \max _{\theta} Q_{k}(\theta)$
\Rightarrow Unfeasible computation of expectation
MCEM (Wei \& Tanner, 1990): Generate samples of missing data from $\mathrm{p}\left(x_{\text {mis }} \mid x_{\text {obs }}, y ; \theta_{k-1}\right)$ and replace the expectation by an empirical mean
\Rightarrow Require a huge number of samples
SAEM (Lavielle, 2014) almost sure convergence to MLE (Metropolis Hasting - Variance estimation with Louis formulae).

Unbiased estimates: $\hat{\beta}_{1}, \ldots, \hat{\beta}_{d}-\hat{V}\left(\hat{\beta}_{1}\right), \ldots, \hat{V}\left(\hat{\beta}_{d}\right)-$ good coverage

Low rank estimation with MNAR data

$Y \in \mathbb{R}^{n \times p}$ noisy realisation of a low-rank matrix $\Theta \in \mathbb{R}^{n \times p}$:

$$
Y=\Theta+\epsilon, \text { where }\left\{\begin{array}{l}
\Theta \text { with rank } r<\min \{n, p\}, \\
\epsilon_{i} \stackrel{\Perp}{\sim} \mathcal{N}\left(0_{n}, \sigma^{2} I_{n \times n}\right), \forall i \in[1, n] .
\end{array}\right.
$$

\rightarrow Access only to the missing-data matrix $Y \odot M$,

- How to estimate Θ ?
- How to impute the unknown entries of Y ?

Data distribution

$$
p\left(y_{i j} ; \Theta_{i j}\right)=\left(2 \pi \sigma^{2}\right)^{-1 / 2} \exp \left(-\frac{1}{2}\left(\frac{y_{i j}-\Theta_{i j}}{\sigma}\right)^{2}\right) .
$$

MNAR missing-data mechanism via a Logistic Model
$\forall i \in[1, n], \phi_{j}=\left(\phi_{1 j}, \phi_{2 j}\right)$ denoting a parameter vector:

$$
p\left(M_{i j} \mid y_{i j} ; \phi\right)=\left[\left(1+e^{-\phi_{1 j}\left(y_{i j}-\phi_{2 j}\right)}\right)^{-1}\right]^{\left(1-\Omega_{i j}\right)}\left[1-\left(1+e^{-\phi_{1 j}\left(y_{i j}-\phi_{2 j}\right)}\right)^{-1}\right]^{\Omega_{i j}}
$$

\rightsquigarrow self-masked MNAR : the lack only depends on the value itself.

EM algo with MNAR (self-mask logistic) ${ }^{6}$

MAR (ignorable): maximize the observed penalized log-likelihood

$$
\hat{\Theta} \in \operatorname{argmin}_{\Theta}\|(Y-\Theta) \odot M\|_{F}^{2}+\lambda\|\Theta\|_{\star},
$$

Classical: iterative soft-thresholding (ISTA) of SVD softimpute (Hastie), its accelerated version: FISTA (Beck \& Teboulle)

MNAR (non ignorable) $\ell\left(\Theta, \phi ; y_{\text {obs }}, M\right)=\int p(y ; \Theta) p(M \mid y ; \phi) d y_{\text {mis }}$.

- E-step:

$$
Q\left(\Theta, \phi \mid \hat{\Theta}^{(t)}, \hat{\phi}^{(t)}\right)=-\mathbb{E}_{Y_{\text {mis }}}\left[\ell(\Theta, \phi ; y, \Omega) \mid Y_{\mathrm{obs}}, M ; \Theta=\hat{\Theta}^{(t)}, \phi=\hat{\phi}^{(t)}\right]
$$

- M-step:

$$
\hat{\Theta}^{(t+1)}, \hat{\phi}^{(t+1)} \in \operatorname{argmin}_{\Theta, \phi} Q\left(\Theta, \phi \mid \hat{\Theta}^{(t)}, \hat{\phi}^{(t)}\right)+\lambda\|\Theta\|_{\star}
$$

- E-step: Monte-Carlo approximation and SIR algorithm.
- M-step: Separability of Q:
- Θ : softImpute, FISTA.
- ϕ : Newton-Raphson algorithm.
\Rightarrow Computationally costly, few variables with MNAR.

[^2]
Take home message inference/imputation

- Few implementation of EM strategies
"The idea of imputation is both seductive and dangerous". It is seductive because it can lull the user into the pleasurable state of believing that the data are complete after all, and it is dangerous because it lumps together situations where the problem is sufficiently minor that it can be legitimately handled in this way and situations where standard estimators applied to the imputed data have substantial biases." (Dempster \& Rubin, 1983)
- Single imputation aims at completing a dataset as best as possible
- Multiple imputation aims at estimating the parameters and their variability taking into account the uncertainty of the missing values
- Single imputation can be appropriate for point estimates
- Both \% of NA \& structure matter (5% of NA can be an issue)

Principal component methods powerful for single \& multiple imputation of quanti \& categorical data: Dimensionality reduction and capture similarities between observations and variables. missMDA package

- Still difficult to handle MNAR (Estim. \& imput. in PPCA. Neurips2020.)

Supervised learning with missing

 values
Outline

1. Introduction

2. Inference with missing values/ Imputation
3. Supervised learning with missing values

Random Forests with missing values

Collaborators on supervised learning with missing values

- M. Le Morvan, Postdoc at INRIA, Paris.
- E. Scornet, Associate Professor at Ecole Polytechnique, IP Paris.

Topic: random forests.

- G. Varoquaux, Senior researcher at INRIA, Paris.

Topic: machine learning. Creator of Scikitlearn in python.

\Rightarrow Random Forests with missing values

1. Consistency of supervised learning with missing values. (2019). Revis JMLR.
\Rightarrow Linear regression with missing values - MultiLayer perceptron
2. Linear predictor on linearly-generated data with missing values: non consistency and solutions. AISTAT2020.
3. Neumiss networks: differential programming for supervised learning with missing values. Neurips2020.

Missing values in a predictive framework (not inferential)

- Aim: target an outcome Y (not estimate parameters and their variance)
- Specificities: train \& test sets with missing values
- Methods: (in practice) imputation prior to prediction
- Separate: impute train and test separately (with a different model)
- Grouped/ semi-supervised: impute train and test simultaneously but the predictive model is learned only on the training imputed data set.
- Imputation train and test sets with the same model Issue: methods (missForest) are "black-boxes" i.e. take as an input the incomplete data and output the completed data

Easy for univariate imputation: mean of each colum of the train.

Mean imputation is bad for estimation

Individuals factor map (PCA)

Variables factor map (PCA)

PCA with mean imputation
library (FactoMineR) PCA (ecolo)
Warning message: Missing are imputed by the mean of the variable:
You should use imputePCA from missMDA

EM-PCA

library (missMDA) imp <- imputePCA (ecolo) PCA (imp\$comp)
J. (2016). missMDA: Handling Missing Values in Multivariate Data Analysis, JSS.

Ecological data: ${ }^{7} n=69000$ species -6 traits. Estimated correlation between
Pass \& Rmass ≈ 0 (mean imputation) or ≈ 1 (EM PCA)
${ }^{7}$ Wright, I. et al. (2004). The worldwide leaf economics spectrum. Nature.

Constant (mean) imputation is consistent for prediction

$\tilde{X}=X \odot(1-M)+N A \odot M$. New feature space is $\widetilde{\mathbb{R}}^{d}=(\mathbb{R} \cup\{N A\})^{d}$.
$Y=\left(\begin{array}{l}4.6 \\ 7.9 \\ 8.3 \\ 4.6\end{array}\right) \quad \tilde{X}=\left(\begin{array}{lll}9.1 & \text { NA } & 1 \\ 2.1 & \text { NA } & 3 \\ \text { NA } & 9.6 & 2 \\ \text { NA } & 5.5 & 6\end{array}\right) \quad X=\left(\begin{array}{lll}9.1 & 8.5 & 1 \\ 2.1 & 3.5 & 3 \\ 6.7 & 9.6 & 2 \\ 4.2 & 5.5 & 6\end{array}\right) \quad M=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$

Find a prediction function that minimizes the risk.

$$
\begin{aligned}
& \text { Bayes rule: } f^{*} \in \underset{f: \mathbb{R}_{d} d \rightarrow \mathbb{R}}{\arg \min } \mathbb{E}\left[(Y-f(\tilde{X}))^{2}\right] \\
& \begin{aligned}
f^{*}(\tilde{X}) & =\mathbb{E}[Y \mid \tilde{X}]=\mathbb{E}\left[Y \mid X_{o b s(M), M}\right] \\
& =\sum_{m \in\{0,1\}^{d}} \mathbb{E}\left[Y \mid X_{o b s(m)}, M=m\right] \mathbb{1}_{M=m}
\end{aligned}
\end{aligned}
$$

\Rightarrow One model per pattern (2^{d}) (Rubin, 1984, generalized propensity score)

Constant (mean) imputation is consistent for prediction

$\tilde{X}=X \odot(1-M)+N A \odot M$. New feature space is $\widetilde{\mathbb{R}}^{d}=(\mathbb{R} \cup\{N A\})^{d}$.
$Y=\left(\begin{array}{l}4.6 \\ 7.9 \\ 8.3 \\ 4.6\end{array}\right) \quad \tilde{X}=\left(\begin{array}{lll}9.1 & \text { NA } & 1 \\ 2.1 & \text { NA } & 3 \\ \text { NA } & 9.6 & 2 \\ \text { NA } & 5.5 & 6\end{array}\right) \quad X=\left(\begin{array}{lll}9.1 & 8.5 & 1 \\ 2.1 & 3.5 & 3 \\ 6.7 & 9.6 & 2 \\ 4.2 & 5.5 & 6\end{array}\right) \quad M=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$

Find a prediction function that minimizes the risk.

$$
\begin{aligned}
& \text { Bayes rule: } f^{*} \in \underset{f: \underset{\mathbb{R}^{d} d \mathbb{R}}{ }}{\arg \min } \mathbb{E}\left[(Y-f(\tilde{X}))^{2}\right] \\
& \begin{aligned}
f^{*}(\tilde{X}) & =\mathbb{E}[Y \mid \tilde{X}]=\mathbb{E}\left[Y \mid X_{o b s(M), M}\right] \\
& =\sum_{m \in\{0,1\}^{d}} \mathbb{E}\left[Y \mid X_{o b s(m)}, M=m\right] \mathbb{1}_{M=m}
\end{aligned}
\end{aligned}
$$

\Rightarrow One model per pattern $\left(2^{d}\right)$ (Rubin, 1984, generalized propensity score)

Constant (mean) imputation is consistent

Framework - assumptions

- $Y=f(X)+\varepsilon$
- $X=\left(X_{1}, \ldots, X_{d}\right)$ has a continuous density $g>0$ on $[0,1]^{d}$
- $\|f\|_{\infty}<\infty$
- Missing data MAR on X_{1} with $M_{1} \Perp X_{1} \mid X_{2}, \ldots, X_{d}$.
- $\left(x_{2}, \ldots, x_{d}\right) \mapsto \mathbb{P}\left[M_{1}=1 \mid X_{2}=x_{2}, \ldots, X_{d}=x_{d}\right]$ is continuous
- ε is a centered noise independent of $\left(X, M_{1}\right)$
(remains valid when missing values occur for several variables X_{1}, \ldots, X_{j})

Constant (mean) imputation is consistent

Constant imputed entry $x^{\prime}=\left(x_{1}^{\prime}, x_{2}, \ldots, x_{d}\right): x_{1}^{\prime}=x_{1} \mathbb{1}_{M_{1}=0}+\alpha \mathbb{1}_{M_{1}=1}$

Theorem. (J. et al. 2019)

$$
\begin{aligned}
f_{\text {impute }}^{\star}\left(x^{\prime}\right)= & \mathbb{E}\left[Y \mid X_{2}=x_{2}, \ldots, X_{d}=x_{d}, M_{1}=1\right] \\
& \mathbb{1}_{\left.x_{1}^{\prime}=\alpha\right]} \mathbb{1}_{\mathbb{P}\left[M_{1}=1 \mid X_{2}=x_{2}, \ldots, X_{d}=x_{d}\right]>0} \\
& +\mathbb{E}\left[Y \mid X=x^{\prime}\right] \mathbb{1}_{x_{1}^{\prime}=\alpha} \mathbb{1}_{\mathbb{P}\left[M_{1}=1 \mid X_{2}=x_{2}, \ldots, X_{d}=x_{d}\right]=0} \\
& +\mathbb{E}\left[Y \mid X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{d}=x_{d}, M_{1}=0\right] \mathbb{1}_{x_{1}^{\prime} \neq \alpha} .
\end{aligned}
$$

Prediction with mean is equal to the Bayes function almost everywhere

$$
f_{\text {impute }}^{\star}\left(X^{\prime}\right)=f^{\star}(\tilde{X})=\mathbb{E}[Y \mid \tilde{X}=\tilde{x}]
$$

Rq: pointwise equality if using a constant out of range.
\Rightarrow Learn on the mean-imputed training data, impute the test set with the same means and predict is optimal if the missing data are MAR and the learning algorithm is universally consistent

Consistency of supervised learning with NA: Rationale

- Specific value, systematic like a code for missing
- Need a lot of data (asymptotic result) and a super powerful learner
- The learner detects the code and recognizes it at the test time
- With categorical data, just code "Missing"
- With continuous data, any constant:

Train

Test

Mean imputation not bad for prediction; it is consistent; despite its drawbacks for estimation - Useful in practice!

Empirically good results for MNAR

Consistency of supervised learning with NA: Rationale

- Specific value, systematic like a code for missing
- Need a lot of data (asymptotic result) and a super powerful learner
- The learner detects the code and recognizes it at the test time
- With categorical data, just code "Missing"
- With continuous data, any constant: out of range

Train

Test

Mean imputation not bad for prediction; it is consistent; despite its drawbacks for estimation - Useful in practice!

Empirically good results for MNAR

CART (Breiman, 1984)

Built recursively by splitting the current cell into two children: Find the feature j^{\star}, the threshold z^{\star} which minimises the (quadratic) loss

$$
\begin{aligned}
\left(j^{\star}, z^{\star}\right) \in \underset{(j, z) \in \mathcal{S}}{\arg \min } \mathbb{E} & {\left[\left(Y-\mathbb{E}\left[Y \mid X_{j} \leq z\right]\right)^{2} \cdot \mathbb{1}_{X_{j} \leq z}\right.} \\
& \left.+\left(Y-\mathbb{E}\left[Y \mid X_{j}>z\right]\right)^{2} \cdot \mathbb{1}_{X_{j}>z}\right] .
\end{aligned}
$$

CART (Breiman, 1984)

Built recursively by splitting the current cell into two children: Find the feature j^{\star}, the threshold z^{\star} which minimises the (quadratic) loss

$$
\begin{aligned}
\left(j^{\star}, z^{\star}\right) \in \underset{(j, z) \in \mathcal{S}}{\arg \min } \mathbb{E} & {\left[\left(Y-\mathbb{E}\left[Y \mid X_{j} \leq z\right]\right)^{2} \cdot \mathbb{1}_{X_{j} \leq z}\right.} \\
& \left.+\left(Y-\mathbb{E}\left[Y \mid X_{j}>z\right]\right)^{2} \cdot \mathbb{1}_{X_{j}>z}\right]
\end{aligned}
$$

CART (Breiman, 1984)

Built recursively by splitting the current cell into two children: Find the feature j^{\star}, the threshold z^{\star} which minimises the (quadratic) loss

$$
\begin{aligned}
\left(j^{\star}, z^{\star}\right) \in \underset{(j, z) \in \mathcal{S}}{\arg \min } \mathbb{E} & {\left[\left(Y-\mathbb{E}\left[Y \mid X_{j} \leq z\right]\right)^{2} \cdot \mathbb{1}_{X_{j} \leq z}\right.} \\
& \left.+\left(Y-\mathbb{E}\left[Y \mid X_{j}>z\right]\right)^{2} \cdot \mathbb{1}_{X_{j}>z}\right]
\end{aligned}
$$

CART with missing values

root

	X_{1}	X_{2}	Y
1			
2	NA		
3	NA		
4			

CART with missing values

	X_{1}	X_{2}	Y
1			
2	NA		
3	NA		
4			

$$
X_{1} \leq s_{1}
$$

1) Select variable and threshold on observed values ($1 \& 4$ for X_{1})
$\mathbb{E}\left[\left(Y-\mathbb{E}\left[Y \mid X_{j} \leq z, M_{j}=0\right]\right)^{2} \cdot \mathbb{1}_{X_{j} \leq z, M_{j}=0}+\left(Y-\mathbb{E}\left[Y \mid X_{j}>z, M_{j}=0\right]\right)^{2} \cdot \mathbb{1}_{X_{j}>z, M_{j}=0}\right]$.

CART with missing values

	X_{1}	X_{2}	Y
1			
2	NA		
3	NA		
4			

$$
x_{1} \leq s_{1}
$$

1) Select variable and threshold on observed values ($1 \& 4$ for X_{1})
$\mathbb{E}\left[\left(Y-\mathbb{E}\left[Y \mid X_{j} \leq z, M_{j}=0\right]\right)^{2} \cdot \mathbb{1}_{X_{j} \leq z, M_{j}=0}+\left(Y-\mathbb{E}\left[Y \mid X_{j}>z, M_{j}=0\right]\right)^{2} \cdot \mathbb{1}_{X_{j}>z, M_{j}=0}\right]$.
2) Propagate observations $(2 \& 3)$ with missing values?

- Probabilistic split: Bernoulli($\left.\frac{\# L}{\# L+\# R}\right)$ (Rweeka)
- Block: Send all to a side by minimizing the error (xgboost, lightgbm)
- Surrogate split: Search another variable that gives a close partition (rpart)

Missing incorporated in attribute (Twala et al. 2008)

One step: select the variable, the threshold and propagate missing values

1. $\left\{\widetilde{X}_{j} \leq z\right.$ or $\left.\widetilde{X}_{j}=\mathrm{NA}\right\}$ vs $\left\{\widetilde{X}_{j}>z\right\}$
2. $\left\{\widetilde{X}_{j} \leq z\right\}$ vs $\left\{\widetilde{X}_{j}>z\right.$ or $\left.\widetilde{X}_{j}=\mathrm{NA}\right\}$
3. $\left\{\widetilde{X}_{j} \neq \mathrm{NA}\right\}$ vs $\left\{\widetilde{X}_{j}=\mathrm{NA}\right\}$.

- The splitting location z depends on the missing values
- Missing values treated like a category (well to handle $\mathbb{R} \cup N A$)
- Good for informative pattern (M explains Y)

Targets one model per pattern:

$$
\mathbb{E}[Y \mid \tilde{X}]=\sum_{m \in\{0,1\}^{d}} \mathbb{E}\left[Y \mid X_{o b s(m)}, M=m\right] \mathbb{1}_{M=m}
$$

- Implementation ${ }^{8}$: grf package, scikit-learn, partykit
\Rightarrow Extremely good performances in practice for any mechanism.
${ }^{8}$ implementation trick, J. Tibshirani, duplicate the incomplete columns, and replace

Consistency: 40\% missing values MCAR

Linear problem (high noise)

Sample size

- Surrogates (rpart)
- Mean imputation

Friedman problem (high noise)

Sample size

- Gaussian imputation - MIA

Non-linear problem (low noise)

Take-home message. Supervised learning with missing values.

Supervised learning different from usual inferential probabilistic models. Solutions useful in practice robust to the missing-value mechanisms but needs powerful model.

Powerful learner with missing values

- Incomplete train and test \rightarrow same imputation model
- Single constant imputation is consistent with a powerful learner
- Empirically, good imputation reduce sample complexity
- Tree-based models : Missing Incorporated in Attribute
- To be done: nonasymptotic results, uncertainty, distributional shift: No NA in the test? Proofs in MNAR

Still an active area of research! Join this exciting field!

- New architecture for network with missing data: $\odot M$ nonlinearity.
- Supervised clustering with missing values
- Times series with missing values

Ressources

R-miss-tastic https://rmisstastic.netlify.com/R-miss-tastic
J., I. Mayer, N. Tierney \& N. Vialaneix

Project funded by the R consortium (Infrastructure Steering Committee) ${ }^{9}$
Aim: a reference platform on the theme of missing data management

- list existing packages
- available literature
- tutorials
- analysis workflows on data
- main actors
\Rightarrow Federate the community
\Rightarrow Contribute!
${ }^{9}$ https://www.r-consortium.org/projects/call-for-proposals

Ressources

Examples:

- Lecture ${ }^{10}$ - General tutorial : Statistical Methods for Analysis with Missing Data (Mauricio Sadinle)
- Lecture - Multiple Imputation: mice by Nicole Erler ${ }^{11}$
- Longitudinal data, Time Series Imputation (Steffen Moritz - very active contributor of r-miss-tastic), Principal Component Methods ${ }^{12}$

```
10https://rmisstastic.netlify.com/lectures/
11}\mathrm{ https://rmisstastic.netlify.com/tutorials/erler_course_
multipleimputation_2018/erler_practical_mice_2018
12https://rmisstastic.netlify.com/tutorials/Josse_slides_imputation_PCA_2018.pdf
```


Thank you

1) Those who can extrapolate from incomplete data

[^0]: ${ }^{1}$ Doubly robust treatment effect estimation with incomplete confounders. Mayer, Wager, J. Annals Of Applied Statistics 2020.

[^1]: ${ }^{1}$ Doubly robust treatment effect estimation with incomplete confounders. Mayer, Wager, J.

[^2]: ${ }^{6}$ Low-rank estimation with missing non at random data. (2018) Statistics and Computing

